Dual-Phase Inorganic Membrane for High Temperature CO₂ Separation Jerry Y.S. Lin, S. Chung, D. Li, J. Ida and J. Park Department of Chemical & Material engineering University of Cincinnati # **Motivation** #### Why do we need to separate CO₂? - Carbon dioxide emits from most industrial facilities - Carbon dioxide causes 'Green House effect' - Possible use as a feedstock (warm CO₂) to synthesize fuels #### • Why do we use membrane for CO₂ separation? - Simple, continuous and energy efficient process - Applicable to the process at high temperature # Impact of this research # Inorganic membrane for CO₂ separation - Polymeric membrane (unstable at high temperature) - Microporous inorganic membrane (low selectivity at T>350°C) - Ionic conducting membrane (from concept of fuel cell): Operated at 400-600°C with high selectivity #### **Principle of MCFC** #### **Common electrolyte:** Eutectic composition of Li₂CO₃ / K₂CO₃ (62 mol% / 38 mol%) #### **Operating Temperature:** 600 ~ 650°C #### **Major problem:** Precipitation / Contamination of electrodes, reducing performance #### Concept of dual-phase membrane # **Objectives** - Synthesis of the dual-phase membrane - Prepare dense and stable dual-phase membrane - Characterization of dual-phase membrane - Gas-tightness for He and N₂ - XRD / SEM analysis → Identification of dual phase - Design of high temperature seal & cell - Sealing Test with various seals → Gas tight cell design - CO₂ separation at high temperature - Permselectivity of CO_2/N_2 (400-600°C) > 100 - Permeance of CO_2 (400~600°C) > 1~5 x10⁻⁷ mol/m².s.Pa # **Experimental Strategy** - Development of methods for membrane preparation (Completed) - Material selection, contact time, temperature, preheating - Membrane characterization (Completed) - He gas tightness / XRD / SEM with EDS - Designing of high temperature seal and cell (Completed) - He permeation and stability test with various seals - Single / Binary gas permeation test (Completed) - gas (He, CO₂, N₂, O₂+CO₂) permeances at various Temp. - Separation with multi-component gas (continued) - Multicomponent separation system (CO₂, N₂, O₂ mixture) ## **Material Selection** #### **Metal support** #### **General information** | Material | Stainless steel 316 | |-------------------------|------------------------------| | Structure | Spherical particle compacted | | Media Grade | 0.5, 2, 5, 10 | | Porosity | 25-45% | | Pore diameter | 1~10μm | | Electrical Conductivity | 10 ⁴ S/cm | #### Media Grade 0.5 (SEM, 200x) \rightarrow He permeation test \rightarrow Selection of suitable support #### Characterization of metal substrate **He Permeance vs Average Pressure** #### **Characterization of metal substrate** #### **Parameters related to pore size with various supports** | Media
grade | b x 10 ⁻¹⁰ | a x 10 ⁻⁵ | b/a x 10 ⁻⁵ | r _թ [μm] | τ | Average pore diameter [µm] | |----------------|-----------------------|----------------------|------------------------|---------------------|--------|----------------------------| | 0.5 | 7.44 | 3.64 | 2.05 | 2.65 | 3.93 | 5.30 | | 2 | 83.84 | 2.96 | 28.34 | 36.75 | 93.71 | 73.50 | | 5 | 111.37 | 3.45 | 32.25 | 41.82 | 99.22 | 83.64 | | 10 | 144.07 | 3.25 | 44.34 | 57.51 | 152.64 | 115.02 | #### **Molten carbonate infiltration** #### Metal substrate pore $$\Delta P = \frac{2\sigma}{R}, r = R\cos\theta$$ $$r = \frac{2\sigma\cos\theta}{\Delta P}$$ where, $\sigma = 237 \text{ mN/m}^2$ $\theta = 0 \text{ for stainless steel}$ Capillary pressure △P=1 atm **Substrate pore size 9**µm. Media grade 0.5 was chosen # **Material Selection** #### **Carbonate Mixture** | | Li/Na/K
Carbonate | Li/K
Carbonate | Li/Na
Carbonate | Na/K
Carbonate | |------------------------|----------------------|-------------------|--------------------|-------------------| | Composition (mol%) | 43.5/31.5/25 | 62/38 | 52/48 | 56/44 | | Melting Point (°C) | 397 | 488 | 501 | 710 | | conductivity
(S/cm) | 1.24 | 1.15 | 1.75 | 1.17 | [➤] Low melting point and high electrical conductivity → Li/Na/K (43.5/31.5/25 mol%) was chosen #### Preparation of the dual phase membrane - Mix and melt Li/Na/K carbonate (43.5/31.5/25 mole%) - Infiltrate molten carbonate into the pores by dipping method. # SEM image of dual-phase membrane Before infiltration Metal support, 1000x After infiltration **Metal-carbonate, 1000x** #### Identification of dual-phase structure Dual-phase membrane is successfully prepared #### **Experimental Apparatus** unsteady state type Gas permeation setup # Seal design for high temperature #### **Comparison chart for high temperature seals** | Seal | Rubber | Pure
Graphite | Graphite
Composite | Nickel
Alloy | Gold | |--|---------------------|--------------------|-----------------------|--------------------|---------------------| | He Permeance
(mol/s.m ² .Pa)
at R.T. | 2x10 ⁻¹⁰ | 1x10 ⁻⁷ | 8x10 ⁻⁹ | 7x10 ⁻⁹ | 6x10 ⁻¹⁰ | | He Permeance
(mol/s.m ² .Pa)
at 450°c | - | 3x10 ⁻⁷ | 3x10 ⁻⁹ | 7x10 ⁻⁹ | 3x10 ⁻¹⁰ | | Stability at high Temp. | Burn | Vaporization | Vaporization | inert | Inert | #### Theoretical permeation flux #### Wagner Theory $$J(CO_2) = -\frac{RT}{16 F^2 L} \int_{\ln P_{CO_2}}^{\ln P_{CO_2}} \frac{\sigma_{el} \sigma_{ion}}{\sigma_{el} + \sigma_{ion}} d \ln P_{CO_2}$$ F (Faraday constant): 9.65 x 10⁴ C/mol , R (Gas constant), d (Thickness) $$J(CO_2) \propto rac{\sigma_{el}\sigma_{ion}}{\sigma_{el}+\sigma_{ion}} \cong \sigma_{ion} \; (\; \because \sigma_{el} >> \sigma_{ion} \;) \; .$$ σ_{ion} (CO₃²⁻ conductivity) : 0.5-2 S/cm (at 600 °C, Pco₂ = 1/3 atm) σ_{el} (Electronic conductivity : 10⁴ S/cm Rate determining variable : σ_{ion} CO₂ permeance : 2~10 x10⁻⁷ mol/m².s.Pa (for 1 mm thick membrane) ## Single / Binary gas permeation test Gas permeation at various temperature (450-750°C) #### Comparison of permeation flux Deactivation occurred at higher than 650°C, #### Structure of metal-carbonate membrane XRD pattern of dual-phase membrane & molten carbonate #### XRD analysis after permeation XRD pattern of membrane after CO₂ permeation at 500°C #### XRD analysis after permeation XRD pattern of membrane after CO₂ + O₂ permeation at 600°C #### **Accomplishments** - Dense and stable dual-phase metal-carbonate membranes were successfully prepared by direct infiltration method. He gas-tightness of dual-phase membrane was 10⁻⁶ times higher than that of metal support. - Permeance of CO₂ with O₂ increases with temperature and reaches the optimum at 650°C. Maximum ratio of CO₂/N₂ permeance was about 16 and CO₂ permeance was 7x10⁻⁸ mol/s.m².Pa. - At higher temperature, membrane was deactivated due to oxidation, causing a significant decrease in permeance of CO₂ with O₂. XRD results shows that Iron oxide was formed on the membrane after CO₂ with O₂ permeation experiment. # **Future work** # Ceramic-carbonate system for CO₂ separation - Deactivation of metal carbonate membrane is caused by oxidation of support or reaction of metal support with molten carbonate. - Perovskite type ceramic support (Lanthanum Cobaltite) is an alternative support with better oxidation resistance than metal and good electronic conductivity. #### Multi-component separation experiment - Design and setup new separation/permeation setup - Perform separation of CO₂ from mixture of N₂,CO₂,O₂ # **Alternative support** # Porous ceramic support | Material | Lanthanum Cobaltite | |-------------------------|---| | Composition | La _a Sr _b Co _c Fe _d O | | | a:b:c:d=6:4:8:2 | | Electrical Conductivity | 1200-1500 S/cm | | | (400-600°C) | | Preparation Method | Citrate Method | #### **Preparation of ceramic supports** | Step | Details | |-----------------------|--| | Precusors | La(NO ₃) ₃ .6H ₂ O, Sr(NO ₃) ₂ , Fe(NO ₃) ₃ . 6H ₂ O,
Co(NO ₃) ₃ .6H ₂ O | | Polymerization | 100-105°C, stirring, 5h | | Vaporization | 100-105°C, 5h | | Powder Drying | 110°C | | Self Ignition Step | 400°C, 1hr | | Preliminary Sintering | 600°C, 5-24hr | | Final Sintering | 900°C, 20hr, Ramping Rate 2° C/min | #### Reactivity of LSCF + carbonate mixture LSCF + Li/Na/K carbonate LSCF perovskite powder Li/Na/K carbonate powder XRD peaks of LSCF + Carbonate mixture (600°C, overnight) #### Electronic conduction of the support Before & After Final sintering 900°C, 24h # **Comparison of support** | Support | Porous 316LSS
(Grade 0.5) | LSCF support | α -Alumina | |----------------------------|------------------------------|------------------------|------------------------| | Permeance
(mol/s.m².Pa) | 1.0 x 10 ⁻⁴ | 1.1 x 10 ⁻⁵ | 8.0 x 10 ⁻⁶ | | Mean pore
size (μm) | 5.8 | 2.2 | 1.0 | ➤ Variables to control pore size distribution → Particle size, Sintering temperature #### **Multicomponent separation system** # Thank you for your attention # (cont'd) # Permeance of CO₂, N₂, O₂+CO₂ and their selectivity at 450-700 °C | Tomp | Permeance (mol/s.m2.Pa) x 10 ⁻¹⁰ | | | Selectivity | | |---------------|---|----------------|----------------------------------|----------------------------------|--------------------| | Temp.
(°C) | CO ₂ | N ₂ | O ₂ + CO ₂ | CO ₂ / N ₂ | $O_2 + CO_2 / N_2$ | | 450 | 93.00 | 116.24 | 209.24 | 0.80 | 1.80 | | 500 | 116.24 | 66.44 | 243.60 | 1.75 | 3.67 | | 550 | 93.00 | 69.76 | 321.48 | 1.33 | 4.61 | | 600 | 139.48 | 46.48 | 487.16 | 3.00 | 10.48 | | 650 | 162.72 | 46.48 | 744.00 | 3.50 | 15.98 | | 700 | 121.28 | 35.76 | 432.56 | 3.39 | 12.09 | | 750 | 46.68 | 39.80 | 93.36 | 1.17 | 2.34 |